## B. Review of Partial Fractions

When computing integrals and inverse Laplace transforms, rational functions, i.e. ratios of polynomials, arise:

$$
R(s)=\frac{P(s)}{Q(s)}=\frac{p_{n} s^{n}+p_{n-1} s^{n-1}+\cdots+p_{1} s+p_{0}}{q_{m} s^{m}+q_{m-1} s^{m-1}+\cdots+q_{1} s+q_{0}}
$$

It is useful to express $R(s)$ as a sum of simple fractions, this is called the partial fractions expansion of $R(s)$. Here's how to do that:

Step 0: If degree $P(s) \geq$ degree $Q(s)$, first perform a long division.

$$
\text { Example: } \frac{s^{5}+1}{s^{4}+2 s^{2}+1}=s-\frac{2 s^{3}+s-1}{s^{4}+2 s^{2}+1}
$$

Step 1: If the denominator hasn't already been factored, factor it completely.

$$
\text { Example: } \quad-\frac{2 s^{3}+s-1}{s^{4}+2 s^{2}+1}=-\frac{2 s^{3}+s-1}{\left(s^{2}+1\right)^{2}}
$$

Step 2: For each factor in the denominator of the form $(s+a)^{p}$ include terms of the form

$$
\frac{A_{1}}{(s+a)}+\frac{A_{2}}{(s+a)^{2}}+\cdots+\frac{A_{p}}{(s+a)^{p}}
$$

and for each term in the denominator of the form $\left(s^{2}+b s+c\right)^{q}$, include terms of the form

$$
\frac{A_{1} s+B_{1}}{\left(s^{2}+b s+c\right)}+\frac{A_{2} s+B_{2}}{\left(s^{2}+b s+c\right)^{2}}+\ldots \frac{A_{p} s+B_{p}}{\left(s^{2}+b s+c\right)^{q}}
$$

in the partial fractions expansion.

Examples:

$$
\begin{aligned}
-\frac{2 s^{3}+s-1}{\left(s^{2}+1\right)^{2}} & =\frac{A s+B}{\left(s^{2}+1\right)}+\frac{C s+D}{\left(s^{2}+1\right)^{2}} \\
\frac{2 s^{3}-s^{2}+2 s}{(s-1)^{2}\left(s^{2}+s+1\right)} & =\frac{A}{(s-1)}+\frac{B}{(s-1)^{2}}+\frac{C s+D}{\left(s^{2}+s+1\right)}, \\
\frac{3 s^{4}+3 s^{3}-3 s^{2}-2 s+4}{s^{2}(s-1)\left(s^{2}+2 s+2\right)} & =\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{(s-1)}+\frac{D s+E}{\left(s^{2}+2 s+2\right)} . \\
\frac{3 s^{4}+3 s^{3}-3 s^{2}-2 s+4}{s^{2}(s-1)\left(s^{2}+2 s+2\right)^{2}} & =\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{(s-1)}+\frac{D s+E}{\left(s^{2}+2 s+2\right)}+\frac{F s+G}{\left(s^{2}+2 s+2\right)^{2}} .
\end{aligned}
$$

Step 3: Determine a system of equations for the unknown constants by collecting terms in the partial fractions expansion and equating the numerator of the result with the numerator of the original fraction.

$$
\text { Example: } \frac{-2 s^{3}-s+1}{\left(s^{2}+1\right)^{2}}=\frac{A s+B}{\left(s^{2}+1\right)}+\frac{C s+D}{\left(s^{2}+1\right)^{2}}=\frac{A s^{3}+B s^{2}+(A+C) s+(B+D)}{\left(s^{2}+1\right)^{2}} .
$$

So $A=-2 \quad B=0, \quad A+C=-1, \quad B+D=1$.
Step 4: Solve the system to determine the unknown constants.

Example (From Step 3): $A=-2, \quad B=0, \quad C=1, \quad D=1$.
Hence, $\quad \frac{-2 s^{3}-s+1}{\left(s^{2}+1\right)^{2}}=\frac{-2 s}{\left(s^{2}+1\right)}+\frac{s+1}{\left(s^{2}+1\right)^{2}}$.

