1. (10 points) Solve the initial value problem

$$
y^{\prime \prime}+6 y^{\prime}+13 y=0, \quad y(0)=2, \quad y^{\prime}(0)=-2 .
$$

Write the solution in the form of $R e^{-\lambda t} \cos (\omega t-\varphi)$.
2. (8 points) Consider the linear homogeneous equation

$$
t^{2} y^{\prime \prime}-5 t y^{\prime}+8 y=0
$$

(a) (5 points) Find all values of p such that $y(t)=t^{p}$ is a solution to the above equation.
(b) (3 points) Find the general solutions to the differential equation.
3. (10 points) Find the general solutions to

$$
y^{\prime \prime}-y=e^{t}+\cos t
$$

4. (10 points) An undamped mass spring system is released from equilibrium with a velocity of $6 \mathrm{~m} / \mathrm{s}$. The mass is 3 kg and it oscillates with an amplitude of 2 meters. There is no forcing. Find the spring constant k.
5. (12 points) A 1 kg mass is attached to a spring with spring constant 9 Newtons $/ \mathrm{m}$ and is forced by an external force of $16 \sin 5 t$ Newtons. At time $t=0$, the system is at equilibrium position $y=0$ with initial velocity $y^{\prime}=-2 \mathrm{~m} / \mathrm{s}$. Formulate an initial value problem and solve it. Write the solution as a product of two trigonometric functions.
