Math 307-Section L
Win 2019
Final Exam
03/18/19

Name: Solutions

This exam contains 9 pages (including this cover page) and 9 problems. Put your first and last name on the top of this page.

You may not use your books, notes, or a graphing calculator on this exam.
You may use a non-graphing calculator on this exam.
You may use a single sheet of handwritten notes, with size not exceeding $11^{\prime \prime} \times 8.5^{\prime \prime}$
Turn off all cellphones and electronic devices.

Do not open the exam until time.

| Problem | Points | Score |
| :---: | :---: | :---: |
| 1 | 8 |  |
| 2 | 9 |  |
| 3 | 8 |  |
| 4 | 10 |  |
| 5 | 6 |  |
| 6 | 6 |  |
| 7 | 6 |  |
| 8 | 15 |  |
| 9 | 12 |  |
| Total: | 80 |  |

1. (8 points) Find the explicit solution to the initial value problem

$$
y^{\prime}=\frac{t}{y \sqrt{t^{2}+1}}, \quad y(0)=2
$$

$$
\begin{aligned}
& y d y=\frac{t}{\sqrt{t^{2}+1}} d t \\
& \frac{1}{2} y^{2}=\sqrt{t^{2}+1}+C \\
& \frac{1}{2} \times 4=1+C \\
& c=1 \\
& y=\sqrt{2 \sqrt{t^{2}+1}+2}
\end{aligned}
$$

2. (9 points) Find all equilibrium solutions to

$$
y^{\prime}=(y+3) y^{2}\left(y^{2}+1\right)(y-1)
$$

and label them as stable, unstable or semistable. If $y(0)=\frac{1}{2}$, what is $\lim _{t \rightarrow+\infty} y(t)$ ? (It might be helpful to sketch a direction field)

unstable
semistable


$$
y=-3
$$

stable

$$
2 f y(0)=\frac{1}{2}, \quad y(t) \rightarrow 0
$$

3. (8 points) Newton's law of cooling states that the temperature of an object changes at a rate proportional to the difference between the temperature of the object itself and the temperature of its surroundings. There is a cup of ice water in a room with ambient temperature 72 Fahrenheit. The differential equation for the temperature of the ice water $T$ can be written as

$$
\frac{\mathrm{d} T}{\mathrm{~d} t}=k(72-T)
$$

Assume the initial temperature of the ice water is 30 Fahrenheit. After 10 minutes, the femperature becomes 51 Fahrenheit. Determine the constant $k$. (You need to specify the unit for k.)

$$
\frac{d T}{d t}+k T=72 k
$$

$$
e^{k t} \cdot T^{\prime}+e^{k t} \cdot k T=72 k e^{k t}
$$

$$
\begin{gathered}
\left(e^{k t} T\right)^{\prime}=72 k e^{k t} \\
e^{k t} \cdot T=72 e^{k t}+C \\
T=72+C e^{-k t}
\end{gathered}
$$

$c=-42$

$$
\begin{gathered}
T=72-42 e^{-k t} \\
T(10)=72-42 e^{-10 t}=51 \\
42 e^{-10 k}=21 \\
e^{-10 k}=\frac{1}{2} \\
-10 k=\ln \frac{1}{2} \\
k=\frac{1}{10} \ln 2 \mathrm{~min}^{-1}
\end{gathered}
$$

4. (10 points) A 1 kg mass is attached to a spring with spring constant $10 \mathrm{~kg} / \mathrm{s}^{2}$ and is connected to a damper with damping coefficient $2 \mathrm{~kg} / \mathrm{s}$. No external force is applied. At time $t=0$, the system is at position $y=-2 \mathrm{~m}$ with initial velocity $y^{\prime}=-4 \mathrm{~m} / \mathrm{s}$. Formulate an initial value problem for the position of the mass and solve it. Write the solution in the form of $R e^{\lambda t} \cos (\omega t-\varphi), R>0$.

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+10 y=0 \\
& y(0)=2, \quad y^{\prime}(0)=4 \\
& y=C_{1} e^{-t} \cos 3 t+c_{2} e^{-t} \sin 3 t \\
& y(0)=c_{1}=-2 \\
& y^{\prime}(0)=-c_{1}+3 C_{2}=-4 \Rightarrow c_{2}=-2 \\
& y=-2 e^{-t} \cos 3 t-2 e^{-t} \sin 3 t \\
& =2 \sqrt{2} e^{-t} \cos \left(3 t-\frac{5 \pi}{4}\right)
\end{aligned}
$$

5. (6 points) Find a particular solution to the differential equation

$$
\begin{gathered}
r^{\prime}+1 r+2 r=0 \\
r=-1,-2 \\
Y(t)=A t e^{-t} \\
Y^{\prime}(t)=A y^{\prime}+2 y=2 e^{-t} \\
Y^{\prime \prime}(t)=-A e^{-t}-A e^{-t}+A t e^{-t} \\
=-2 A e^{-t}+A+e^{-t}+3 A e^{-t}-3 A t e^{-t}+2 A+e^{-t} \\
=A e^{-t}=2 e^{-t} \\
=A(t)+3 Y(t)+2 \\
A=2
\end{gathered}
$$

6. (6 points) Peter has one object, but he did not know the mass of the object. He found a (undamped) harmonic oscillator with mass 1 kg . The natural frequency of the harmonic oscillator is $1 \mathrm{rad} / \mathrm{s}$. Then he replaced the mass with his own object, and remeasured the frequency. The frequency became $2 \mathrm{rad} / \mathrm{s}$. Determine the mass of Peter's object.

$$
\begin{aligned}
& w_{A}=\sqrt{\frac{k}{m_{A}}} \\
& w_{B}=\sqrt{\frac{k}{m_{B}}} \\
& \left(\frac{w_{A}}{w_{B}}\right)^{2}=\frac{m_{B}}{m_{A}} \quad \text { awwor } \quad \frac{1}{4} \mathrm{~kg} \\
& \quad \frac{\text { mas of Peters object }}{1}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}
\end{aligned}
$$

7. (6 points) Find one pair of values for $\omega_{0}$ and $\omega$, such that $y(t)=A \sin t \sin 4 t$ is a solution to the differential equation

$$
\begin{aligned}
& \begin{array}{c}
y^{\prime \prime}+w_{0}^{3}=\operatorname{cosest} . \\
(O K \text { to hare negative } \\
\left.w, w_{0}\right)
\end{array} \\
& \Rightarrow\left\{\begin{array} { l } 
{ w = 5 } \\
{ w _ { 0 } = 3 }
\end{array} \text { or } \left\{\begin{array}{l}
w=3 \\
w_{0}=5
\end{array}\right.\right.
\end{aligned}
$$

for some constant $A$.

$$
\begin{aligned}
& \text { method } 1 \quad \frac{w_{0}+w}{2}=4 \\
& \frac{w_{0}-w}{2}= \pm 1
\end{aligned} \Rightarrow\left\{\begin{array}{l}
w=5, w_{0} \\
w_{0}=3
\end{array} \text { or }\left\{\begin{array}{l}
w=3 \\
w_{0}=5
\end{array}\right\} \begin{array}{l}
\text { method } 2 y(t)=B(\cos 5 t+\cos 3 t) \quad B=\frac{1}{2} A \\
y^{\prime \prime}(t)=-B(25 \cos 5 t+q \cos 3 t) \quad w_{0}^{2}=55 \\
-25 B \cos 5 t-9 B \cos 3 t+B w_{0}^{2} \cos 5 t \Rightarrow \omega^{2} 9 \\
+
\end{array}\right.
$$

8. (15 points) The following parts are NOT related.
(a) (5 points) Find the inverse Laplace transform of
(b) (5 points) Find the inverse Laplace transform of


$$
\text { answer } u_{2}(t)\left[-\frac{1}{4} e^{t-2}-\frac{1}{2}(t-2) e^{t-2}\right.
$$

$$
\left.+\frac{1}{4} e^{3(t-2)}\right]
$$

(c) (5 points) Calculate the convolution of $\sin t$ and $\sin 2 t$.

$$
\begin{aligned}
& \text { Method 1. } \begin{aligned}
\mathcal{L}\{(\sin t) *(\sin 2 t)\} & =\underset{\operatorname{L}}{\mathcal{L}}\{\sin +\} \mathcal{L}\{\sin t\} \\
& =\frac{2}{s^{2}+1} \cdot \frac{2}{s^{2}+4} \\
\left.(\sin t) *(\sin -2 t)=\mathcal{L}-1) \frac{2}{\left(s^{2}+1\right)\left(s^{2}+4\right)}\right\} & =\frac{2}{3} \sin t-\frac{1}{3} \sin 2 t \\
\int_{1}^{t} \sin (t-\tau) \sin 2 \tau d \tau & =\frac{1}{2} \int \cos (t-3 \tau)-\cos (t+\tau) d \tau \\
& =-\left.\frac{1}{6} \sin (t-3 \tau)\right|_{\tau=0} ^{t=t}-\left.\frac{1}{2} \sin (t+\tau)\right|_{\tau=0} ^{\tau=t} \\
& =\frac{1}{6} \sin 2 t+\frac{1}{6} \sin t-\frac{1}{2} \sin 2 t+\frac{1}{2} \sin t
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3 s-9}{s^{2}+4 s+13} \\
& \frac{3(s+2)-15}{(s+2)^{2}+9}=3 \cdot \frac{s+2}{(s+2)^{2}+9}-5 \frac{3}{(+2)^{2}+9} \\
& \mathfrak{L}^{-1} \\
& 3 e^{-2 t} \cos 3 t-5 e^{-2 t} \sin 3 t
\end{aligned}
$$

9. (12 points) Solve the initial value problem

$$
y^{\prime \prime}+y=\left\{\begin{array}{rr}
1, & 0 \leq t<3 \\
5, & 3 \leq t<5 \\
0, & t \geq 5
\end{array} \quad, \quad y(0)=0, y^{\prime}(0)=2\right.
$$

$$
\begin{aligned}
& y^{\prime \prime}+y=1+4 u_{3}(t)-5 u_{5}(t) \\
& s^{2} Y(s)-2+Y(s)=1+4 \frac{e^{-3 s}}{s}-5 \frac{e^{-5 s}}{s} \\
& \left(s^{2}+1\right) Y(s)=\frac{1}{s}+e^{-3 s} \frac{4}{s}-5 \frac{e^{-s s}}{s}+2 \\
& Y(s)=\frac{1}{s\left(s^{2}+1\right)}+e^{-3 s} \frac{4}{s\left(s^{2}+1\right)}-e^{-5 s} 5 \frac{s}{s\left(s^{2}+1\right)}+\frac{2}{s^{2}+1} \\
& \mathcal{L}^{-1}\left\{\frac{1}{s\left(s^{2}+1\right)}\right\}=\mathcal{L}^{-1}\left\{\frac{1}{s}-\frac{s}{s^{2}+1}\right\}=1-\cos t \\
& y(t)=1-\cos t+4 u_{3}(t)[1-\cos (t-3)] \\
& \quad-5 u_{5}(t)[1-\cos (t-5)]+2 \sin t
\end{aligned}
$$

