Math 307-Section L
Name: Solntions
Win 2019
Exam 1
02/01/19

This exam contains 6 pages (including this cover page) and 5 problems. Put your first and last name on the top of this page.

You may not use your books, notes, or a graphing calculator on this exam.
You may use a non-graphing calculator on this exam.
Turn off all cellphones and electronic devices.
Do not open the exam until time.

Problem	Points	Score
1	9	
2	10	
3	13	
4	8	
5	10	
Total:	50	

1. (9 points) The following parts are NOT related.
(a) (3 points) Verify that $y(t)=\cos t$ is a solution to the differential equation $y^{\prime \prime}+y=0$.

$$
\begin{aligned}
& y^{\prime}=-\sin t \\
& y^{\prime \prime}=-\cos t \\
& y^{\prime \prime}+y=-\cos t+\cos t=0
\end{aligned}
$$

(b) (3 points) Find all equilibrium solutions for $y^{\prime}=y \cos y$.

$$
y=0 \quad \text { or } \cos y=0
$$

equilibrium solus: $0, k \pi+\frac{1}{2} \pi$,

$$
k \text { any integer }
$$

(c) (3 points) Is the solution to the initial value problem unique: $t y^{\prime}=y, y(0)=0$? Justify your answer.

$$
N_{0}
$$

$$
\begin{aligned}
y(t)= & C t \text { are solutions } \\
& \text { for any constant }
\end{aligned}
$$

2. (10 points) Find the explicit solution to the initial value problem

$$
y^{\prime}=\frac{\left(y^{2}-4\right) \cos 3 t}{y}, \quad y(0)=3
$$

Here y is a function of t.

$$
\begin{gathered}
\frac{y}{y^{2}-4} d y=\cos 3 t \\
\frac{1}{2} \ln \left|y^{2}-4\right|=\frac{1}{3} \sin 3 t+C \\
\ln \left|y^{2}-4\right|=\frac{2}{3} \sin 3 t+C \\
y^{2}-4=C \cdot e^{\frac{2}{3} \sin 3 t} \\
\text { I.C } \Rightarrow=5 \\
y^{2}=5 e^{\frac{2}{3} \sin 3 t}+4 \\
y= \pm \sqrt{5 e^{\frac{2}{3} \sin 3 t}+4} \\
\text { I.C } \Rightarrow \quad y=\sqrt{5 e^{\frac{2}{3} \sin 3 t}+4}
\end{gathered}
$$

3. (13 points) Consider the initial value problem

$$
y^{\prime}=e^{-3 t}+2 t e^{-2 t}-y, \quad y(0)=1
$$

Here y is a function of t.
(a) (1 point) Is this equation linear or nonlinear? (You do not need to explain)
linear
(b) (2 points) What is $y^{\prime}(0)$ and $y^{\prime \prime}(0)$?

$$
\begin{aligned}
& y^{\prime}(0)=e^{-3 \cdot 0}+2 \cdot 0 e^{-2 \cdot 0}-y(0)=0 \\
& y^{\prime \prime}(t)=-3 e^{-3 t}+2 e^{-2 t}-4 t e^{-2 t}-y^{\prime}(t) \\
& \\
& \text { (c) (8 points) Find the explicit solution. } \quad y^{\prime \prime}(0)=-3+2-0=-1
\end{aligned}
$$

$$
\begin{aligned}
\left(e^{t} y\right)^{\prime} & =e^{-2 t}+2 t e^{-t} e^{t} \\
e^{t} y & =-\frac{1}{2} e^{-2 t}+\int 2 t e^{-t} d t \\
& =-\frac{1}{2} e^{-2 t}-\int 2 t d e^{-t} \\
& =-\frac{1}{2} e^{-2 t}-2 t e^{-t}+2 \int e^{-t} d t \\
& =-\frac{1}{2} e^{-2 t}-2 t e^{-t}-2 e^{-t}+C \\
1 . C \Rightarrow \quad 1 & =-\frac{1}{2}-2+C, c=\frac{7}{2} \\
y & =-\frac{1}{2} e^{-3 t}-2 t e^{-2 t}-2 e^{-2 t}+\frac{7}{2} e^{-t}
\end{aligned}
$$

(d) (2 points) For the solution obtained in part (c), what is

$$
\lim _{t \rightarrow+\infty} y(t)=\mathbf{0}
$$

4. (8 points) Consider a free falling object with mass m, and assume the air resistance is propertional to v^{3} (with constant of proportionality $\beta>0$), where v is the velocity of the object. The constant of gravity is $g>0$ (Do not use a number for g). Use the convention that v is positive if the object is going down.
(a) (4 points) Write down the differential equation for the velocity of the object as a function of time. You do not need to solve it.

$$
m \frac{d v}{d t}=m g-\beta v^{3}
$$

(b) (4 points) Sketch a direction field and show the equilibrium solution, label it as stable or unstable. You need to find the value of the equilibrium in m, β, g.

5. (10 points) Suppose a tank initially (at $t=0$) contains 100 liters (L) of fresh water. Suppose further that:

- Water flows into the tank at a rate of 2 liters per minute with a concentration of 10 gram (g) of salt per liter of water.
- Water flows out of the tank at a rate of 3 liters per minute.
- The salt-water mixture is well (perfectly) mixed.
(a) (5 points) Formulate an initial value problem for, $Q(t)$, the amount of salt in grams in the tank at time t (measured in minutes) before the tank is empty. Specify the domain of t.

$$
\begin{aligned}
& \frac{d Q}{d t}=20-\frac{3 Q}{100-t} \\
& Q(0)=0
\end{aligned} \quad t \in[0,100)
$$

(b) (5 points) Solve the initial value problem for $Q(t)$.

$$
\begin{aligned}
& \frac{d Q}{d t}+\frac{3 Q}{100+t}=20 \\
& \text { Integrating factor } \\
& \mu(t)=e^{\int \frac{3}{100-t} d t}=e^{-\operatorname{sen}|t-|c|} \\
& =e^{-3 \ln (100-t)} \\
& \begin{array}{ll}
\text { notice the clomain of } & =e \\
t . \quad 100-t>0 & =(100-t)^{-3}
\end{array} \\
& {\left[(100-t)^{-3} Q\right]^{\prime}=20(100-t)^{-3}} \\
& (100-t)^{-3} Q=10(100-t)^{-2}+C \\
& I . C \Rightarrow 10 \times 100^{-2}+C, C=-10^{-3} \\
& Q=10(100-t)-10^{-3}(100-t)^{3}
\end{aligned}
$$

