Math 307-Section L

Win 2019
Exam 2
02/27/19

This exam contains 5 pages (including this cover page) and 4 problems. Put your first and last name on the top of this page.

You may not use your books, notes, or a graphing calculator on this exam.
You may use a non-graphing calculator on this exam.
You may use a single sheet of handwritten notes, with size not exceeding $11^{\prime \prime} \times 8.5^{\prime \prime}$
Turn off all cellphones and electronic devices.

Do not open the exam until time.

Problem	Points	Score
1	16	
2	12	
3	14	
4	8	
Total:	50	

1. (16 points) The following parts are NOT related.
(a) (4 points) It is known that $y(t)=\cos 3 t$ is a solution to the initial value problem $y^{\prime \prime}+$ $5 y^{\prime}-y=g(t), y(0)=y_{0}, y^{\prime}(0)=v_{0}$. Determine $g(t), y_{0}, v_{0}$.

$$
\begin{aligned}
g(t) & =-9 \cos 3 t-15 \sin 3 t-\cos 3 t \\
& =-10 \cos 3 t-15 \sin 3 t \\
y_{0} & =1, \quad u_{0}=0
\end{aligned}
$$

(b) (4 points) Find the values of α and β such that $y(t)=\alpha t^{\beta}$ is a solution to $t^{2} y^{\prime \prime}-t y^{\prime}+y=t^{2}$.

$$
\begin{gathered}
\alpha \beta(\beta-1) t^{\beta}-\alpha \beta+t^{\beta}+\alpha+\beta=t^{2} \\
\alpha(\beta-1)^{2}+t^{\beta}=t^{2}
\end{gathered}
$$

$$
\beta=2, \quad \alpha(\beta-1)^{2}=1
$$

(c)

$$
\alpha=1
$$

(d) (4 points) Write the function $u=2 \sqrt{3} \cos \frac{t}{2}+2 \sin \frac{t}{2}$ in the form of $R \cos (\omega t-\varphi)$.

$$
4 \cos \left(\frac{1}{2} t-\frac{\pi}{6}\right)
$$

2. (12 points) Solve the initial value problem

$$
y^{\prime \prime}+4 y^{\prime}+4 y=4 t^{2}+8 t+6, \quad y(0)=3, \quad y^{\prime}(0)=-3 .
$$

homogeneous solus

$$
C_{1} e^{-2 t}+C_{2}+e^{-2 t}
$$

Special sold $Y=A t^{2}+B+C$

$$
\begin{aligned}
& Y^{\prime}=2 A t+B \\
& Y^{\prime \prime}=2 A \\
& 2 A+4(3 A++B)+4\left(A t^{2}+B t+C\right) \\
& =4 A t^{2}+(8 A+4 B) t+2 A+4 B+4 C \\
& =4 t^{2}+8 t+6 \\
& A=1, \quad B=0, C=1 \\
& Y=t^{2}+1 \\
& y=C_{1} e^{-2 t}+C_{2}+e^{-2 t}+t^{2}+1 \\
& y(0)=C_{1}+1=3 \\
& y^{\prime}(0)=-2 C_{1}+C_{2}=-3 \quad C_{2}=1 \\
& y=2 e^{-2 t}+t e^{-2 t}+t^{2}+1
\end{aligned}
$$

3. (14 points) Write down the general solutions for

$$
y^{\prime \prime}-6 y^{\prime}=3 \cos 6 t+36 t
$$

homogeneous sols $y=C_{1} e^{6 t}+C_{2}$
(1) special solution for $3 \cos 6 t$

$$
\begin{aligned}
& Y= A \cos 6 t+B \sin 6 t \\
& Y^{\prime \prime}-6 Y^{\prime}=-36 A \cos 6 t-36 B \sin 6 t \\
&+36 A \sin 6 t-36 B \cos 6 t=3 \cos 6 t \\
& A-B=0 . \quad-36(A+B)=3 \\
& A=B=-\frac{1}{24} \quad Y=-\frac{1}{24} \cos 6 t-\frac{1}{24} \sin 6 t
\end{aligned}
$$

(2) special summation for $36+$

$$
\begin{gathered}
Y=(A t+B) \cdot t \\
Y^{\prime \prime}-6 Y^{\prime}=2 A-6(2 A t+B)=36 t \\
-12 A=36 \quad 2 A-6 B=0 \\
A=-3 . \quad B=-1 \quad Y=-3 t^{2}-t \\
y=C_{1} e^{6 t}+C_{2} \quad-\frac{1}{24} \cos 6 t-\frac{1}{24} \sin 6 t \\
-3 t^{2}-t
\end{gathered}
$$

4. (8 points) Peter has a damped harmonic oscillator (without mass), but he did not know the spring constant or the damping coefficient. He prepared two objects A and B. The mass of Object A is 1 kilogram, and the mass of Object B is 4 kilograms. When peter attached Object A to the harmonic oscillater, the (quasi-) frequency of the oscillation he measured is $1 \mathrm{rad} / s$. When he used Object B, he measured the same frequency $1 \mathrm{rad} / \mathrm{s}$. Determine the spring constant (in kg / s^{2}) and the damping coefficient (in kg / s), and write down the differential equation for the damped harmonic oscillator with Object A. You do NOT need to solve it.

$$
\begin{aligned}
& m y^{\prime \prime}+8 y^{\prime}+k y=0 \\
& \text { fregueny }=\frac{\sqrt{4 k m-\gamma^{2}}}{2 m}=1 \text { when } \begin{array}{l}
m=1 \\
m=4
\end{array} \\
& \frac{\sqrt{4 k-\gamma^{2}}}{2}=1 \\
& \frac{\sqrt{16 k-r^{2}}}{8}=1 \\
& \left\{\begin{array}{l}
4 k-\gamma^{2}=4 \\
16 k-\gamma^{2}=64
\end{array}\right. \\
& k=5, \gamma=4 \\
& y^{\prime \prime}+4 y^{\prime}+5 y=0
\end{aligned}
$$

