1. (8 points) Find the explicit solution to the initial value problem

$$
y^{2} \sqrt{t^{2}+1} y^{\prime}-t y=0, \quad y(0)=-2
$$

Here y is a function of t.

$$
\begin{gathered}
\frac{d y}{d t}=\frac{t y}{y^{2} \sqrt{t^{2}+1}} \\
y d y=\frac{t}{\sqrt{t^{2}+1}} d t \\
\frac{1}{2} y^{2}=\left(t^{2}+1\right)^{\frac{1}{2}}+C \\
y(0)=-2 \Rightarrow \\
2=1+C \\
C=1 \\
y^{2}=2\left(t^{2}+1\right)^{\frac{1}{2}}+2 \\
y=\frac{1}{2\left(t^{2}+1\right)^{\frac{1}{2}}+2} \\
y(0)=-2 \Rightarrow \\
y=-\sqrt{2\left(t^{2}+1\right)^{\frac{1}{2}}+2}
\end{gathered}
$$

2. (10 points) Find the solution to the initial value problem

$$
t^{3} y^{\prime}=-4 t^{2} y+\sin t, \quad y(\pi)=0, \quad t>0
$$

Here y is a function of t.

$$
\begin{aligned}
& t^{3} y^{\prime}+4 t^{2} y=\sin t \quad m n t i p l y \\
& t^{9} y+4 t^{3} y=t \sin t \\
&\left(t^{4} y\right)^{\prime}=t \sin t \\
& t^{4} y=\int t \sin t d t \\
&=-\int t \cos t \\
&=-t \cos t+\int \cos t d t \\
&=-t \cos t+\sin t+C \\
& I C \Rightarrow \quad 0=\pi+C \Rightarrow C=-\pi \\
& y=-\frac{\cos t}{t^{3}}+\frac{\sin t}{t^{4}}-\frac{\pi}{t^{4}}
\end{aligned}
$$

3. (10 points) Suppose a quantity $B(t)>0$ is governed by the first order differential equation

$$
\frac{\mathrm{d} B}{\mathrm{~d} t}=\frac{1}{2} B \cos B-K B
$$

where K is a constant such that $B=\frac{\pi}{3}$ is an equilibrium solution.
(a) (4 points) Find K and state whether $B=\frac{\pi}{3}$ is stable or unstable.
(b) (6 points) If $B(t)$ is the unique solution to the above differential equation satisfying $B(0)=$ 4π, what is $\lim _{t \rightarrow+\infty} B(t)$? Justify your answer.
(a).

$$
\frac{1}{2} B \cos B-K B=B\left(\frac{1}{2} \cos B-K\right)
$$

$$
\frac{1}{2} \cos \frac{\pi}{3}-K=0
$$

$$
\frac{1}{4}-K=0
$$

$$
k=\frac{1}{4} \text {. }
$$

In a neighborhood of $\frac{\pi}{3}$.
$B\left(\frac{1}{2} \cos B-\frac{1}{4}\right)>0, B<\frac{\pi}{3}$ $B\left(\frac{1}{2} \cos B-\frac{1}{4}\right)<0 \quad B>\frac{\pi}{3}$
stable!
(b) 0 the equilibrium solutions: $2 k \pi \pm \frac{\pi}{3}, k=1,2,3, \cdots$

$$
4 \pi+\frac{\pi}{3}
$$

$$
\lim _{t \rightarrow \infty} B(t)=\frac{13 \pi}{3}
$$

4. (10 points) The velocity $v(t)$ of a falling object with air resistance proportional to its velocity satisfies the differential equation

$$
m \frac{\mathrm{~d} v}{\mathrm{~d} t}=-k v+m g
$$

where g is the magnitude of gravitational acceleration, k is a constant which depends on the object (called the coefficient of air resistance) and m is the mass of the object.
Note: The convention we are using here is that v is negative when the body is ascending (going up) and positive when it is descending (going down).
(a) (7 points) Assume that $v(0)=0$. Find a formula for $v(t)$.

Note: Your answer will be a formula in t, m, k and g. Do not use a numerical value for g, Simplify your answer.
(b) (3 points) An object with $m=20 \mathrm{~kg}, \mathrm{k}=2 \mathrm{~kg} / \mathrm{s}$ started to fall with zero initial velocity and reached velocity $50 \mathrm{~m} / \mathrm{s}$ at time t_{0}. Find the value of t_{0}. Assume $g=10 \mathrm{~m} / \mathrm{s}^{2}$.
(a)

$$
m v^{\prime}+k v=m g
$$

$$
\begin{aligned}
& v^{\prime}+\frac{k}{m} v=g \\
& v^{\prime} e^{\frac{k}{2} t}+\frac{k}{m} e^{\frac{k}{m} t} v=e^{\frac{k}{k} t} g \\
& \left(e^{\frac{k}{m} t} v\right)^{\prime}=e^{\frac{k}{m} t} g
\end{aligned}
$$

$$
\begin{aligned}
& e^{\frac{k}{n} t}{ }_{v}=\frac{m g}{k} e^{\frac{k}{m} t}+C \\
I . C . \Rightarrow & \frac{m g}{k}+C=0 \Rightarrow C=-\frac{m g}{k}
\end{aligned}
$$

(b)

$$
\begin{array}{r}
\text { I.C. } \Rightarrow \frac{m g}{k}+C=0 \Rightarrow \\
e^{\frac{k}{m}+v}=1 \\
v=\frac{m g}{k} \\
\quad v(t)=100\left(1-e^{-\frac{10}{10}+}\right)
\end{array}
$$

$$
\begin{gathered}
e^{\frac{k}{m} t} v=\frac{m g}{k}\left(e^{\frac{k}{h} t}-1\right) \\
v=\frac{m g}{k}\left(1-e^{-\frac{k}{m} t}\right) \\
v(t)=100\left(1-e^{-\frac{1}{10} t}\right) \\
v\left(t_{0}\right)=100\left(1-e^{-\frac{1}{10} t_{0}}\right)=50 \\
1-e^{-\frac{1}{10} t_{0}}=\frac{1}{2} \quad-\frac{1}{10} t_{0}=\log \frac{1}{2} \\
e^{-\frac{1}{10} t_{0}}=\frac{1}{2} \quad t_{0}=10 \log 2 \text { second }
\end{gathered}
$$

5. (12 points) Newton's law of cooling states that the temperature of an object changes at a rate proportional to the difference between the temperature of the object itself and the temperature of its surroundings
(a) (4 points) There is a cup of ice water in a room with ambient temperature T_{s}. If T_{s} is measured in Fahrenheit and t is measured in minutes, $T_{s}(t)=77+e^{-t} \sin \frac{t}{10}$. The initial temperature of the ice water is 30 Fahrenheit. Assume the absolute value of the proportionality constant K is (with unit $\min ^{-1}$). Let $T(t)$ be the temperature of the ice water at time t. Formulate an initial value problem for T.
(b) (6 points) What is the temperature of the ice water at time t ?
(c) (2 points) Determine $\lim _{t \rightarrow+\infty} T(t)$ and justify your answer.

$$
\begin{aligned}
& \text { (a). } \begin{array}{l}
\frac{d T}{d t}=1 \cdot\left(T T_{3}-T\right) \\
\frac{d T}{d t}=77+e^{-t} \sin \frac{t}{10}-T \quad T(0)=30 \\
\text { (b) } T^{\prime}+T=77+e^{-t} \sin \frac{t}{10} \\
e^{t} T^{\prime}+e^{t} T=77 e^{t}+\sin \frac{t}{10} \quad \text { integrating factor } \\
\left.e^{t} T\right)^{\prime}=77 e^{t}+\sin \frac{t}{10} \\
e^{t} T=77 e^{t}-10 \cos \frac{t}{10}+C \\
I . C \Rightarrow 30=77-10+c \\
\Rightarrow C=-37 \\
\Rightarrow=77-10 e^{-t} \cos \frac{t}{10}-37 e^{-t} \\
\text { (c) } \lim _{t \rightarrow \infty} T(t)=77 . \quad \text { since } \quad e^{-t} \rightarrow 0 \\
\text { as } t \rightarrow \infty
\end{array}
\end{aligned}
$$

