1. Find the Laplace Transforms of the following functions:
(a) $\frac{1}{2} t^{3}+e^{t} \cos 5 t$
(b) $f(t)=\left\{\begin{array}{l}0, \quad 0 \leq t<1 \\ e^{-2 t}-1, \quad t \geq 1\end{array}\right.$
(c) $f(t)=\left\{\begin{array}{l}\cos t, \quad 0 \leq t<\frac{\pi}{2} \\ 0, \quad t \geq \frac{\pi}{2}\end{array}\right.$
(a). $\frac{1}{2} \cdot \frac{3!}{s^{4}}+\frac{s-1}{(s-1)^{2}+25}=\frac{3}{s^{4}}+\frac{s-1}{(s-1)^{2}+25}$

$$
\text { (b). } \begin{aligned}
f(t) & =u_{1}(t)\left(e^{-2 t}-1\right) \\
\mathcal{L}\{f(t)\} & \left.=e^{-s}\left[\mathcal{L}\left\{e^{-2 t-2}\right\}-\mathcal{L} ; 1\right)\right] \\
& =e^{-s}\left[e^{-2} \cdot \frac{1}{s+2}-\frac{1}{s}\right]
\end{aligned}
$$

$$
\text { (c) } \begin{aligned}
f(t) & =\cos +\left[1-\frac{u \pi}{2}(t)\right] \\
\mathcal{L}\{f(t)\} & =\mathcal{L}\{\sin t\}-e^{-\frac{\pi}{2} s} \mathcal{L}\left\{\cos \left(t+\frac{\pi}{c}\right)\right\} \\
& =\mathcal{L}\{\cos t\}+e^{-\frac{\pi}{2} s} \cdot \mathcal{1}\{\sin t\} \\
& =\frac{s}{s^{2}+1}+e^{-\frac{\pi}{2} s} \frac{1}{s^{2}+1}
\end{aligned}
$$

Math 307 - Section L Laplace Transforms - Page 2 of 1
2. Find the Inverse Laplace Transforms of the following functions:
(a) $\frac{1}{s^{2}-5 s+6}$
(b) $\frac{e^{-s}}{s^{2}+6 s+10}$
(c) $\frac{1}{\left(s^{2}+1\right)\left(s^{2}+4\right)}$
(d) $\frac{3}{(s+1)^{2}(s+4)}$
(e) $\frac{e^{-2 s}}{(s-1)^{3}}$
(a) $\frac{1}{s^{2}-5 s+6}=\frac{1}{s-3}-\frac{1}{s-2} \stackrel{\mathcal{L}^{-1}}{\underset{~}{\sim}} e^{3+}-e^{2 t}$
(b) $\frac{e^{-s}}{(s+3)^{2}+1} \stackrel{\mathcal{L}^{-1}}{\sim} u_{1}(t) e^{-3(t-1)} \sin (t-1)$
(c) $\frac{1}{\left(s^{2}+1\right)\left(s^{2}+4\right)}=\frac{1}{3}\left[\frac{1}{\left(s^{2}+1\right.}-\frac{1}{s^{2}+4}\right]$

$$
\xrightarrow{\mathcal{L - 1}^{1}} \frac{1}{3} \cdot \sin t-\frac{1}{6} \sin 2 t
$$

(d)

$$
\begin{aligned}
& \frac{3}{(s+1)^{2}(s+4)}=\frac{A}{s+1}+\frac{B}{(s+1)^{2}}+\frac{C}{s+4} \\
& 3=A(s+1)(s+4)+B(s+4)+C(s+1)^{2} \\
& A=-\frac{1}{3} . B=1 . \quad C=\frac{1}{3} \\
& -\frac{1}{3} \frac{1}{s+1}+\frac{1}{(s+1)^{2}}+\frac{1}{3} \frac{1}{s+4} \longrightarrow-\frac{1}{3} e^{-t}+t e^{-t}+\frac{1}{3} e^{-4 t}
\end{aligned}
$$

(e) $\frac{1}{2} t^{2} e^{t}$ delayed by $2=\frac{1}{2} u_{2}(t)(t-2)^{2} e^{t-2}$
3. Solve the Initial Value Problem using Laplace Transform

$$
\left.\begin{array}{l}
s^{y^{\prime \prime}+4 y^{\prime}+13 y=0, \quad y(0)=1, y^{\prime}(0)=2} \\
\left(s^{2}+4 s+13\right)-s-2+4 s(s)-4+13 Y(s)=0 \\
Y(s)
\end{array}\right)=\frac{s+6}{(s+2)^{2}+9} .
$$

4. Solve the Initial Value Problem

$$
\begin{aligned}
& y^{\prime}-2 y=\left\{\begin{array}{l}
0, \quad 0 \leq t<2 \\
4(t-2), \quad t>2
\end{array} \quad, \quad y(0)=3 .\right. \\
& y^{\prime}-2 y=4 u_{2}(t)(t-2) \\
& s Y(s)-3-2 Y(s)=4 e^{-2 s} \cdot \frac{1}{s^{2}} \\
& Y(s)=4 e^{-2 s} \cdot \frac{1}{s^{2}(s-2)}+\frac{3}{s-2} \\
& \frac{1}{s^{2}(s-2)}=\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s-2} \\
& 1=A s(1-2)+B(s-2)+C s^{2} \\
& A=-\frac{1}{4} . \quad B=-\frac{1}{2}, \quad C=\frac{1}{4} \\
& \frac{1}{s^{2}(s-2)} \xrightarrow{\mathcal{L}^{-1}}-\frac{1}{4}-\frac{1}{2} \cdot t+\frac{1}{4} e^{2 t} \\
& y(t)=u_{2}(t)\left[-1-2(t-2)+e^{2(t-2)}\right]+3 e^{2 t} \\
& = \begin{cases}3 e^{2 t} & 0 \leqslant t<2 \\
3-2 t-e^{2(t-2)}+3 e^{2 t} & t \geqslant 2\end{cases}
\end{aligned}
$$

5. Solve the Initial Value Problem

$$
y^{\prime \prime}+y=\delta(t-\pi)+\delta(t-2 \pi), \quad y(0)=0, y^{\prime}(0)=0
$$

Here y is a function of t. Sketch a graph of the solution.

$$
\begin{aligned}
s^{2} Y(s) & +Y(s) \\
Y(s) & =e^{-\pi s}+e^{-2 \pi s} \cdot \frac{1}{s^{2}+1}+e^{-2 \pi s} \cdot \frac{1}{s^{2}+1} \\
y(t) & =u_{\pi}(t) \cdot \sin (t-\pi)+u_{2 \pi}(t) \sin (t-2 \pi) \\
& = \begin{cases}0 & 0 \leq t<\pi \\
-\sin t & \pi \leqslant t<2 \pi \\
0 & t \geqslant 2 \pi\end{cases}
\end{aligned}
$$

6. Write the solution of the following IVP as a convolution integral

$$
\begin{aligned}
& s^{2} Y(s)+4 Y(s)=F(s) \\
& Y(s)=\frac{1}{s^{\prime}+4}+4(s)=f(s) \\
& y(t)=\frac{1}{2} \sin 2 t * f(t) \\
&=\frac{1}{2} \int_{0}^{t} \sin 2(t-\tau)=0
\end{aligned}
$$

