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1 Modeling with Differential Equations

Example 1:
Consider a tank which is initially filled with 100L of pure water. Assume that
a solution containing 50g of salt per liter enters the tank at a rate of 2L/min,
and that the well-stirred mixture leaves the tank at the same rate. We wish to
determine the amount of salt (in grams) in the tank at any time t > 0 (with time
being measured in minutes).

Before we derive a differential equation, let us investigate this system. First,
the amount of water in the tank is constant since water enters and leaves the tank
at the same rate. Therefore, at all times the amount of water in the tank equals
the amount of water which is in the tank at time t = 0, that is, 100L. Second,
if we let S(t) denote the amount of salt in the tank (that is S(t) tells us how
many grams of salt is in the tank) at time t, then S(0) = 0 since the tank initially
contains only pure water, and therefore no salt.

Intuitively, we expect the amount of salt S(t) to have certain properties. Since
there is no salt in the tank initially, yet solution containing salt is flowing into the
tank, we expect the concentration of salt to increase. Moreover, after a very long
time, we expect the inflow to have “replaced” the pure water that was in the tank
initially, so the concentration of salt in the tank should become close to that of
the solution flowing in the tank, that is, 50g/L. After we find a formula for S(t),
it’s important to check these observations to ensure our formula makes sense.

To determine the formula for S(t), we will set up a differential equation for the
quantity, and then solve it. To do so, we need to assume that S(t) is differentiable
(I’ve swept this point under the rug thus far in the course, but it’s important to
mention. How can we find a solution to a differential equation, when the solution
isn’t even differentiable itself!). In the set up described above, we expect the
amount of salt to change gradually, so the rate of change, dS

dt should indeed be
defined for all times.

To set up the differential equation for S(t), we will investigate how the amount
of salt in the tank changes within short times, and then makes times arbitrarily
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small. Let us consider this change in between time t and a slightly larger time
t + h (that is, h > 0). The difference between the amount of salt at times t and
t+ h is given by

S(t+ h)− S(t).
Another way to represent the change in the amount of salt is to look at the amount
of salt that left and entered the tank. Recall that salt enters the tank at 2L/min,
and each liter contains 50 grams of salt. Thus the amount of salt entering the
tank in h min (in grams) is given by

(hmin) ·
(
2

L
min

)
·
(
50

g
L

)
= (100h)g.

Now, the concentration of salt at a time t in the tank is S(t)
100 g/L (recall the 100L

fixed tank quantity), so since the mixture leaves the tank at a rate of 2L/min, the
amount of salt leaving the tank in h min is approximately

(hmin) ·
(
S(t)

100

g
L

)
·
(
2

L
min

)
=

(
S(t)

50
h

)
g.

This is not the precise amount since the amount of salt will vary in between times
t and t+h, however as previously stated, we expect only gradual changes in S(t),
so it should and will not matter whether we replace S(t) by S(t+ h) or the value
of S at any time between t and t+ h. Now, the change in the amount of salt that
enters the tank minus the amount that leaves the tank, is given by

S(t+ h)− S(t) = 100h− S(t)

50
h.

Dividing both sides by h we obtain

S(t+ h)− S(t)
h

= 100− S(t)

50
.

Now, we make the difference between the two times arbitrarily small, that is, we
let h→ 0. But the LHS is our difference quotient, so as h→ 0, we get that

dS

dt
(t) = lim

h→0

S(t+ h)− S(t)
h

= lim
h→0

(
100− S(t)

50

)
= 100− S(t)

50
.

We have thus derived a differential equation for the amount of salt S, indeed,
since S(0) = 0, as mentioned above, we have the initial value problem given by

dS

dt
= 100− S

50
, S(0) = 0.
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Solving this initial value problem is fairly straightforward as it’s autonomous,
so we get

dS

100− S
50

= dt.

Hence ∫
dt = t+ C

and ∫
ds

100− S
50

= −50 ln
∣∣∣∣100− S

50

∣∣∣∣ .
Note that we can ignore this absolute value sign for the following reason: Initially,
there is no salt in the tank, and the concentration of salt in the inflowing water is
50 g/L, so there cannot be more than 100× 50 = 5000 grams of salt in the water.
That is, S ≤ 5000, or equivalently 100− S

50 ≥ 0. Hence we have the equation

−50 ln
(
100− S

50

)
= t+ C.

Moving stuff around

ln

(
100− S

50

)
= − t

50
+ C,

where C absorbed the − 1
50 . Exponentiating both sides,

100− S

50
= Ce−

t
50 ,

C replaced eC . Hence
S = 5000 + Ce−

t
50 ,

C again absorbed a 50. Finally, using the initial conditions of S(0) = 0, we get
that

0 = 5000 + C,

and so C = −5000. We conclude with the final solution of

S(t) = 5000(1− e−
t
50 ).

Now that we have this formula, we can verify what we had guessed earlier.
Recall that a function is increasing whenever its derivative is positive. Substituting
S(t) into the differential equation, we obtain

S′(t) = 100− S(t)

50

= 100− 5000(1− e−
t
50 )

50

= 100e−
t
50

> 0,
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so S(t) is indeed increasing. To check the long-term amount of salt, we compute
the limit at t→∞, that is,

lim
t→∞

S(t) = lim
t→∞

5000(1− e−
t
50 )

= 5000,

therefore the long-term amount of salt is indeed 5000.

Physical Law (Mixing Formula):
The derivation of the differential equation in the previous example followed from
evaluating the change in the amount of salt within a short time. This boils down
to setting up an equation like the folloiwng

dS = (rate in) · dt− (rate out) · dt,

where dS is the heuristic notation for the change in S, and dt is the change in
time. That is,

dS

dt
= rate in− rate out. (1.1)

It can be used to set up a variety of mixing problems as we shall see promptly.

Example 2:
Next, we consider the situation where we eject a rocket straight into space from
the surface of the earth and want to determine the speed of the rocket. In the
baseball examples we assumed that we are near the surface of the earth and that
the gravitational force is constant. If we eject an object into space, this assumption
is no longer sensible. To adjust the change in gravitational force, we use Newton’s
Law of Universal Gravitation which states the force between two point masses is
inversely proportional to the square of the distance between them, that is,

Fg =
k

d2
,

where k > 0 is some constant of proportionality and d is the distance between two
objects.

Assume we start the space rocket from the surface of the earth with initial
velocity v(0) = v0. We denote by s(t) the distance of the surface of the earth to
the space rocket. Then, the distance of the center of the earth to the space rocket
is the sum of the radius of the earth, (let’s call it) 4000m, and distance from the
surface of the earth to the rocket, given by

d = s(t) + 4000.

Therefore,

Fg =
k

(s(t) + 4000)2
.
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For simplicity later on, let’s solve for k. Recall that we know Fg when the rocket
is on the surface of the earth, that is, at t = 0, s(0) = 0, and Fg = −mg. Hence

−mg =
k

(0 + 4000)2
,

(since s(0) = 0) and so
k = −mg40002.

Substituting back in, see that

Fg =
−mg40002

(s(t) + 4000)2
.

For simplicity we will assume (again) that this is the only force acting on the
rocket. Therefore by Newton’s Second Law, we have that

m
dv

dt
= Fg = −

mg40002

(s(t) + 4000)2
.

Dividing out the m, we get

dv

dt
= − g40002

(s(t) + 4000)2
.

So far this is not a differential equation, but v is the speed of the rocket ship and
s is the position of this rocket ship, so v = ds

dt and hence

d2s

dt2
= − g40002

(s(t) + 4000)2
.

Now this is a differential equation for the distance of the rocket to the surface of
the earth. Note that in contrast to our previous (solved) examples, it involves a
second derivative. Solving differential equations with second derivatives are bit
trickier and we’ll get to a few methods for that later on in the course. In this case,
the trick is to note that the gravitational force depends only on the distance to
the surface of the earth and not time, t. Hence, we use the chain rule to write

dv

dt
=
dv

ds
· ds
dt

=
dv

ds
v.

Thus, we can rewrite our differential equation as

dv

ds
v = − g40002

(s+ 4000)2
.
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Isolating the derivative terms as usual, we get

dv

ds
= − g40002

v(s+ 4000)2

This is a differential equation which involves only a first derivative. However, it
is not autonomous since the right hand side involves both the dependent variable
v and the (newly) independent variable s. Yet, we can push through the same
technique that we have used before to solve autonomous equations: Rewriting and
integrating both sides of

vdv = − g40002

(s+ 4000)2
ds.

This first integral gives
v2

2
+ C

and the second

−g40002
∫

(s+ 4000)−2ds =
g40002

s+ 4000
+ C.

Combining the constants of integration, we get

v2 =
2g40002

s+ 4000
+ C.

Using v(0) = v0, we get that

v20 =
2g40002

0 + 4000
+ C,

and hence
C = v20 − 8000g.

Substituting back in and taking the square root to solve for v, we get that

v(s) =

√
2g40002

s+ 4000
+ v20 − 8000g.

Note that we have chosen the positive square root since we know that the space
rocket is rising.

Furthermore, note this solution is a function v(s) instead of v(t). However,
since v(s) = ds

dt (t), we have another differential equation of the form

ds

dt
=

√
2g40002

s+ 4000
+ v20 − 8000g
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which is autonomous. To solve for v(t), we need to actually solve the above
differential equation for s(t) and then take the derivative with respect to time.
However, as the above turns into quite the difficult integration problem, we shall
stop here and just be satisfied with velocity function dependent on the position,
since the position of the rocket from the earths surface is a measurable quantity
itself.

Example 3:
Let us consider the following variation of the previous mixing problem that will
lead to a differential equation which is not separable. As before, the tank contains
100L of water which initially contains no salt, and solution enters and leaves the
tank at a rate of 2L/min. However, this time, the inflowing solution contains 2e−t

grams of salt per liter, t minutes after the system has been started. Using the
Mixing Formula Equation (1.1), we have that

dS

dt
= rate in− rate out

=
(
2e−t

g
L

)
·
(
2

L
min

)
−
(
S(t)

100

g
L

)
·
(
2

L
min

)
=

(
4e−t − S(t)

50

)
g

min
,

where S(t) denotes the salt in the “well-mixed” mixture. Note that the units of
all three terms is g/min. Generally, equal quantities need to have identical units,
and one can only add (and subtract) quantities which have identical units. You
can use this to check if the differential equation you have set up is reasonable.

2 Population Dynamics and Stability

Differential equations arise quite naturally in the study of population dynamics,
which is the study of how the size of a population varies in different situations.

Example 4 (Malthusian Model):
Assume that we have a population of bacteria which multiplies by cell division. It
is reasonable to assume that the change of the number of bacteria is proportional
to the size of the population. Let us denote the number of individuals at a time
t, by P (t). Then the above model can be formalized as the differential equation

dP

dt
= αP,

where α > 0 is some constant. If the initial condition is P (0) = P0, then this
equation is easily solved (as it’s autonomous) to give

P (t) = P0e
αt.
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2.1 Quantitative Analysis

Sometimes one can actually extract quite a bit of important information from
autonomous differential equations without solving them, as we recall from our
topic on direction fields. These techniques are useful when dealing with more
complicated models which cannot be solved.

Any constant solution to an autonomous differential equation y′ = f(y) is
called an equilibrium solution. The name derives from the fact that if y = a is
a constant solution, then if we start at y(0) = a, we stay at that level, i.e., the
system is in equilibrium. Recall that since equilibrium solutions are constant, they
satisfy dy

dt = 0. Conversely, we can identify equilibrium solutions by identifying
which constant solutions satisfy this differential equation.

For example, in the Malthusian model, suppose that

0 =
dP

dt
= αP.

Then we see that the only constant solution satisfying this equation is P = 0.
This solution corresponds to the case where there are no bacteria initially, and
therefore never any bacteria.

Next, one can make quantitative statements about the slope of the solution of
the differential equations. Again, using the Malthusian model, since the number
of individuals, P , is a non-negative quantity, and α > 0, we have that

dP

dt
= αP ≥ 0,

and hence all the solutions are non-decreasing. This is not surprising, since the
model does not encompass any limiting factors.

In a similar way, we can use the differential equation to determine when the
solutions are concave and convex, respectively (sometimes, mathematicians refer
to concave by “concave down” and convex by “concave up”, you probably learned
that in calculus). To do this, we need to analyze the second derivative, which can
be computed as follows

d2P

dt2
=

d

dt

(
dP

dt

)
=

d

dt
(αP ) = α

dP

dt
= α(αP ) = α2P ≥ 0,

where the second and fourth equality used the differential equation. This tells us
that all solutions are convex.

One can use this quantitative information to sketch the direction field, even
without having actual numbers to compute. Indeed, since our differential equation
is autonomous, we know the slope is independent of the t-variable. Moreover, by
knowing where the integral curves are increasing, decreasing or constant we can
sketch the correct orientation of the slope fields. Then finally, by knowing the
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convexity of the integral curves, we can conclude the change in steepness of the
slope fields. All of this can be done without explicit inputs (compare this with our
previous use of direction fields).

The Malthusian model is, in general, a very poor model to explain population
growth. The reason is that is poorly predicts the size of the population after a
long time, that is,

lim
t→∞

P (t) = lim
t→∞

P0e
αt =∞.

Let’s investigate an improved model, namely, the logistic model.

Example 5 (Logistic Equation):
We will improve the Malthusian model by including an additional factor f(P ) into
the RHS of the differential equation

dP

dt
= αf(P )P.

This factor is supposed to capture the following behavior:

• When the population is small, the population grows nearly proportional to
the size of the population, that is, f(P ) ≈ 1, when P is small.

• As the population approaches a certain level, K, (called the carrying capac-
ity) the growth comes to a halt, i.e., if P ≈ K, then f(P ) ≈ 0.

• If the population exceeds said level K,the population decreases. Formally,
if P > K, then f(P ) < 0.

There are several choice for f(P ) that satisfy these criteria. The simplest choice
is to simply pick a linear function which satisfies f(0) = 1 and f(K) = 0, such as
f(P ) = 1− P

K . This choice leads to the logistic equation

dP

dt
= αP

(
1− P

K

)
.

Let’s determine the equilibrium solutions of the logistic equation. Assume that
P is an equilibrium solution, that is, P is a constant solution. So dP

dt = 0, and
hence

0 =
dP

dt
= αP

(
1− P

K

)
.

As the RHS is a product, it’s only zero if one of the factors is zero. The factor
αP = 0 when P = 0 and the factor (1− P

K ) = 0 when P = K, so we have the two
equilibrium solution, P = 0 and P = K.

Next, let’s examine where the solution is increasing or decreasing. The RHS
of the differential equation,

dP

dt
= αP

(
1− P

K

)
,
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Figure 1: Direction Field of the Logistic Equation with α = 2, K = 1

consists of two factors which we will examine individually. The following table
displays where each of the terms are positive and negative:

(0,K) (K,∞)

αP + +

1− P
K + −

dP
dt + −

,

we therefore see that the solution is increasing on (0,K) and decreasing on (K,∞).
We can carry out a similar analysis with the second derivative to examine where

the solution is convex and concave. First, let’s compute the second derivative by
differentiating the differential equation:

d2P

dt2
=

d

dt

dP

dt

=
d

dt

(
αP

(
1− P

K

))
= α

dP

dt

(
1− P

K

)
− αP

K

dP

dt

= α

(
1− 2P

K

)
dP

dt

= α2P

(
1− 2P

K

)(
1− P

K

)
.

Note that we have a new zero, namely at P = K
2 . Again, we consider each term

on the on the RHS separately.

(0,K/2) (K/2,K) (K,∞)

α2P + + +(
1− 2P

K

)
+ - -(

1− P
K

)
+ + -

d2P
dt

2
+ - +

We conclude that on (0,K/2) ∪ (K,∞), we have that d2P
dt2

> 0 and hence that
the solution is convex. On the other hand, we have that d2P

dt2
< 0 on (K/2,K),

so on this interval the solution is concave. Recall that convex implies the slopes
are increasing in steepness, and concave is decreasing in steepness. We can now
sketch the direction field.
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Figure 2: Direction Field of the Logistic Equation with α = 1, K = 2

2.2 Classification of Equilibrium Solutions

Based on the direction field that we have drawn, we can see that for the equilibrium
solutions of the logistic equation, there is a difference in how solutions close to the
equilibrium solutions behave. On the one hand, for P = 0, even if we start very
close to P (0) = 0, the solutions will finally get very close to the other equilibrium
solution P = K. On the other hand, if we start very far away from P (0) = K,
we end up being very close to P = K. More precisely, if we start at P (0) = 0,
we follow the equilibrium solution P = 0, and for any other positive initial value
P (0) > 0, we end up very close to the equilibrium solution P = K. We say that
an equilibrium solution is stable if it attracts nearby solutions, and we say it is
unstable if it repels nearby solutions. An equilibrium solution which attracts
some solutions and repels others is called semi-stable.

Formally, an equilibrium solution y = a0 is stable if for all admissible initial
values a sufficiently close to a0, the solutions ya satisfy

lim
t→∞

ya(t) = a0.

An equilibrium solution y = a0 is semi-stable if it is not stable, and either for all
larger initial values a > a0 close to a0 or all smaller initial values a < a0 close to
a0, we have

lim
t→∞

ya(t) = a0.

An equilibrium solution y = a0 is unstable if it is neither stable nor semi-stable.
Note that these conditions only apply to admissible initial values, for example, in
a population model, we would only consider nonnegative initial values, and the
sufficiently close part just tells that we’re within two equilibrium solutions.

The direction field, in turn, can be used to classify equilibrium solutions: An Use a picture
to define this
portion.

equilibrium solution y = a0 is stable if either for all y close to a0 with y > a0,
dy
dt < 0, and for all y close to a0 with y < a0,dydt > 0. That means that that arrows
near y = a0 are pointing towards a0.

An equilibrium solution y = a0 is semi-stable if for all y close to a0 we have
that either dy

dt > 0 or dy
dt < 0. That means that arrows near y = a0 are pointing

away from a0 on one side, and towards a0 on the other side.
An equilibrium solution y = a0 is unstable if for all y close to a with y > a0,

dy
dt > 0 and for all y close to a0 with y < a0, dydt < 0. That means that arrows near
y = a0 are point away from a0.

Recall that if dy
dt is positive, the arrows in the direction field are pointing

upward, and that if dy
dt is negative, the arrows in the direction field are point

downward.
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This means we can now classify the equilibrium solutions based on the direction
field for the Logistic Equation. Since dP

dt > 0 on (0,K), solutions starting in that
range drift away from zero, and towards K. Therefore, P = 0 is an unstable
equilibrium solution (as P < 0 doesn’t make sense). Since dP

dt < 0 on (K,∞),
solutions starting in that range drift towards K, too. Therefore, the equilibrium
solution P = K is stable. That is why K is called the carrying capacity of the
logistic equation. It is the maximal amount of individuals that the environment
can sustain. If there are more individuals, their level decreases towards K.

Now that we’ve done all of this quantitative analysis, let’s actually solve the
logistic equation, and verify our analysis. The differential equation is separable,
so we need to solve ∫

1

P
(
1− P

K

)dP =

∫
αdt.

The RHS is easy and gives ∫
αdt = αt+ C.

For the LHS, let’s multiply by K
K to give∫

1

P
(
1− P

K

)dP =

∫
K

P (K − P )
dP.

This is a rational function, so we need to compute its partial fraction decomposi-
tion. That is, we need to solve

K

P (K − P )
=
A

P
+

B

K − P
,

for A and B. Cross-multiplying, this gives the equation

K = A(K − P ) +BP

= (B −A)P +AK.

So A = 1 and B −A = 0, that is, B = 1 as well. Thus,

α+ C =

∫
K

P (K − P )
dP

=

∫ (
1

P
+

1

K − P

)
dP

= ln |P | − ln |K − P |

= ln

∣∣∣∣ P

K − P

∣∣∣∣.
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Solving for P in the usual way, we first get that

P

K − P
= Ceαt.

Moving stuff around gives

P (1 + Ceαt) = KCeαt,

and hence

P =
KCeαt

1 + Ceαt
=

K

Ce−αt + 1
.

Finally, assuming an initial population of P (0) = P0, gives us C, as

P0 = P (0)

=
K

C + 1

yielding

C =
K

P0
− 1 =

K − P0

P0
.

Thus

P (t) =
K

K−P0
P0

e−αt + 1

=
KP0

(K − P0)e−αt + P0
.

To classify the equilibrium solutions, we need to determine limt→∞ P (t). We
compute

lim
t→∞

P (t) = lim
t→∞

KP0

(K − P0)e−αt + P0

=
KP0

P0

= K,

but we need to be careful here, as the expression KP0
P0

only makes sense if P0 6= 0,
since otherwise we would be dividing by zero. The computation above is therefore
not valid if P0 = 0. In that case, we note that P (t) ≡ 0 (as 0 clearly solves the
logistic equation). In that case, we note that

lim
t→∞

P (t) = lim
t→∞

0 = 0.
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We conclude that for any positive initial condition P0 > 0, that

lim
t→∞

P (t) = K,

and if P0 = 0, that
lim
t→∞

P (t) = 0.

That means, that no matter how close to the equilibrium solution P = 0 we start,
we will never end up approaching that equilibrium solution. Therefore, P = 0 is
unstable. For all other initial conditions, we approach the equilibrium solution
P = K, and is hence stable.

This concludes our discussion of the logistic equation. The logistic equation
is an improvement over the Malthusian model we introduced earlier in the sense
that the population does not explode, that is,

lim
t→∞

P (t) <∞.

However, there are still unsatisfactory features of it. As we have just seen, as long
as the initial population is positive, no matter how small, the model will always
predict that the population will approach the carrying capacity K. In reality,
however, populations which start off with very few individuals are likely to die
out. For example, consider a fish population in the Pacific Ocean which consists
of three fish. As the ocean is massive, it’s highly unlikely that any of the fish will
meet and be able to reproduce in their short lifetimes and hence would die out (a
contradiction to our logistic model).
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